Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131475, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608984

RESUMO

Clostridium perfringens is ubiquitously distributed and capable of secreting toxins, posing a significant threat to animal health. Infections caused by Clostridium perfringens, such as Necrotic Enteritis (NE), result in substantial economic losses to the livestock industry annually. However, there is no effective commercial vaccine available. Hence, we set out to propose an effective approach for multi-epitope subunit vaccine construction utilizing biomolecules. We utilized immunoinformatics to design a novel multi-epitope antigen against C. perfringens (CPMEA). Furthermore, we innovated novel bacterium-like particles (BLPs) through thermal acid treatment of various Lactobacillus strains and selected BLP23017 among them. Then, we detailed the structure of CPMEA and BLPs and utilized them to prepare a multi-epitope vaccine. Here, we showed that our vaccine provided full protection against C. perfringens infection after a single dose in a mouse model. Additionally, BLP23017 notably augmented the secretion of secretory immunoglobulin A (sIgA) and enhanced antibody production. We conclude that our vaccine possess safety and high efficacy, making it an excellent candidate for preventing C. perfringens infection. Moreover, we demonstrate our approach to vaccine construction and the preparation of BLP23017 with distinct advantages may contribute to the prevention of a wider array of diseases and the novel vaccine development.

2.
Vet Microbiol ; 293: 110074, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38603982

RESUMO

African swine fever (ASF) is a highly impactful infectious disease in the swine industry, leading to substantial economic losses globally. The causative agent, African swine fever virus (ASFV), possesses intricate pathogenesis, warranting further exploration. In this study, we investigated the impact of ASFV infection on host gene transcription and organelle changes through macrophage transcriptome sequencing and ultrastructural transmission electron microscopy observation. According to the results of the transcriptome sequencing, ASFV infection led to significant alterations in the gene expression pattern of porcine bone marrow derived macrophages (BMDMs), with 2404 genes showing upregulation and 1579 genes downregulation. Cytokines, and chemokines were significant changes in the expression of BMDMs; there was significant activation of pattern recognition receptors such as Toll-like receptors and Nod-like receptors. According to the observation of the ultrastructure, mitochondrial damage and mitochondrial autophagy were widely present in ASFV-infected cells. The reduced number of macrophage pseudopodia suggested that virus-induced structural changes may compromise pathogen recognition, phagocytosis, and signal communication in macrophages. Additionally, the decreased size and inhibited acidification of secondary lysosomes in macrophages implied suppressed phagocytosis. Overall, ASFV infection resulted in significant changes in the expression of cytokines and chemokines, accompanied by the activation of NLR and TLR signaling pathways. We reported for the first time that ASFV infection led to a reduction in pseudopodia numbers and a decrease in the size and acidification of secondary lysosomes.

3.
Int J Biol Macromol ; 264(Pt 1): 130591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437938

RESUMO

Subunit vaccines are becoming increasingly important because of their safety and effectiveness. However, subunit vaccines often exhibit limited immunogenicity, necessitating the use of suitable adjuvants to elicit robust immune responses. In this study, we demonstrated for the first time that pathogenic bacteria can be prepared into a purified peptidoglycan skeleton without nucleic acids and proteins, presenting bacterium-like particles (pBLP). Our results showed that the peptidoglycan skeletons screened from four pathogens could activate Toll-like receptor1/2 receptors better than bacterium-like particles from Lactococcus lactis in macrophages. We observed that pBLP was safe in mouse models of multiple ages. Furthermore, pBLP improved the performance of two commercial vaccines in vivo. We confirmed that pBLP successfully loaded antigens onto the surface and proved to be an effective antigen delivery platform with enhanced antibody titers, antibody avidity, balanced subclass distribution, and mucosal immunity. These results indicate that the peptidoglycan skeleton of pathogenic bacteria represents a new strategy for developing subunit vaccine delivery systems.


Assuntos
Antígenos , Peptidoglicano , Animais , Camundongos , Bactérias/metabolismo , Imunidade nas Mucosas , Adjuvantes Imunológicos , Vacinas de Subunidades , Esqueleto/metabolismo
4.
Front Immunol ; 15: 1362140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510246

RESUMO

Exhausted CD8+T cells represent a distinct cellular lineage that emerges during both chronic infections and cancers. Recent studies have shown that persistent antigen exposure can drive the differentiation of precursor exhausted CD8+T cells, termed Tpex cells, which are characterized as TCF-1+PD-1+CD8+T cells. Elevated Tpex cell frequencies in the tumor microenvironment (TME) are associated with improved overall survival (OS) in cancer patients and heightened responsiveness to anti-PD-1 therapy. In our present study, we utilized multi-color immunohistochemistry (mIHC) to determine the localization and clinical implications of tumor-infiltrating Tpex cells within the TME of human colorectal cancer (CRC) tissues. We also conducted a multi-omics integrative analysis using single-cell RNA sequencing (scRNA-seq) data derived from both the murine MC38 tumor model and human CRC tissues. This analysis helped delineate the transcriptional and functional attributes of Tpex cells within the CRC TME. Furthermore, we employed spatial transcriptome sequencing data from CRC patients to investigate the interactions between Tpex cells and other immune cell subsets within the TME. In conclusion, our study not only established a method for Tpex cell detection using mIHC technology but also confirmed that assessing Tpex cells within the CRC TME could be indicative of patients' survival. We further uncovered the transcriptional and functional characteristics of Tpex cells in the TME and ascertained their pivotal role in the efficacy of immunotherapy against CRC.


Assuntos
Neoplasias Colorretais , Imunoterapia , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Diferenciação Celular , Linhagem da Célula , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Microambiente Tumoral
5.
Biol Trace Elem Res ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273184

RESUMO

The most popular vaccine adjuvants are aluminum ones, which have significantly reduced the incidence and mortality of many diseases. However, aluminum-adjuvanted vaccines are constrained by their limited capacity to elicit cellular and mucosal immune responses, thus constraining their broader utilization. Biogenic selenium nanoparticles are a low-cost, environmentally friendly, low-toxicity, and highly bioactive form of selenium supplementation. Here, we purified selenium nanoparticles synthesized by Levilactobacillus brevis 23017 (L-SeNP) and characterized them using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that the L-SeNP has a particle size ranging from 30 to 200 nm and is coated with proteins and polysaccharides. Subsequently, we assessed the immune-enhancing properties of L-SeNP in combination with an adjuvant-inactivated Clostridium perfringens type A vaccine using a mouse model. The findings demonstrate that L-SeNP can elevate the IgG and SIgA titers in immunized mice and modulate the Th1/Th2 immune response, thereby enhancing the protective effect of aluminum-adjuvanted vaccines. Furthermore, we observed that L-SeNP increases selenoprotein expression and regulates oxidative stress in immunized mice, which may be how L-SeNP regulates immunity. In conclusion, L-SeNP has the potential to augment the immune response of aluminum adjuvant vaccines and compensate for their limitations in eliciting Th1 and mucosal immune responses.

6.
Front Microbiol ; 14: 1284439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107853

RESUMO

TMP269, a small molecular inhibitor of IIa histone deacetylase, plays a vital role in cancer therapeutic. However, the effect of TMP269 on the regulation of viral replication has not been studied. In the present study, we found that TMP269 treatment significantly inhibited RABV replication at concentrations without significant cytotoxicity in a dose-dependent manner. In addition, TMP269 can reduce the viral titers and protein levels of RABV at an early stage in the viral life cycle. RNA sequencing data revealed that immune-related pathways and autophagy-related genes were significantly downregulated after RABV infection treated with TMP269. Further exploration shows that autophagy enhances RABV replication in HEK-293T cells, while TMP269 can inhibit autophagy to decrease RABV replication. Together, these results provide a novel treatment strategy for rabies.

7.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958634

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a significant contributor to diarrhea. To determine whether ETEC-catecholamine hormone interactions contribute to the development of diarrhea, we tested the effects of catecholamine hormones acting on ETEC in vitro. The results showed that in the presence of norepinephrine (NE) and epinephrine (Epi), the growth of 9 out of 10 ETEC isolates was promoted, the MICs of more than 60% of the isolates to 6 antibiotics significantly increased, and the biofilm formation ability of 10 ETEC isolates was also promoted. In addition, NE and Epi also significantly upregulated the expression of the virulence genes feaG, estA, estB, and elt. Transcriptome analysis revealed that the expression of 290 genes was affected by NE. These data demonstrated that catecholamine hormones may augment the diarrhea caused by ETEC.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli Enterotoxigênica/genética , Norepinefrina/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Catecolaminas/farmacologia , Antibacterianos/farmacologia , Diarreia , Epinefrina/farmacologia , Hormônios/farmacologia , Expressão Gênica , Biofilmes , Proteínas de Escherichia coli/metabolismo
8.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005351

RESUMO

Enterococci resistance is increasing sharply, which poses a serious threat to public health. Rhamnolipids are a kind of amphiphilic compound used for its bioactivities, while the combination of nontraditional drugs to restore linezolid activity is an attractive strategy to treat infections caused by these pathogens. This study aimed to investigate the activity of linezolid in combination with the rhamnolipids against Enterococcus faecium. Here, we determined that the rhamnolipids could enhance the efficacy of linezolid against enterococci infections by a checkerboard MIC assay, a time-kill assay, a combined disk test, an anti-biofilm assay, molecular simulation dynamics, and mouse infection models. We identified that the combination of rhamnolipids and linezolid restored the linezolid sensitivity. Anti-biofilm experiments show that our new scheme can effectively inhibit biofilm generation. The mouse infection model demonstrated that the combination therapy significantly reduced the bacterial load in the feces, colons, and kidneys following subcutaneous administration. This study showed that rhamnolipids could play a synergistic role with linezolid against Enterococcus. Our combined agents could be appealing candidates for developing new combinatorial agents to restore antibiotic efficacy in the treatment of linezolid-resistant Enterococcus infections.


Assuntos
Enterococcus faecium , Animais , Camundongos , Linezolida/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterococcus , Testes de Sensibilidade Microbiana , Enterococcus faecalis , Farmacorresistência Bacteriana
9.
Front Immunol ; 14: 1263586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868963

RESUMO

Bacterium-like particles (BLPs) are hollow peptidoglycan particles obtained from food-grade Lactococcus lactis inactivated by hot acid. With the advantage of easy preparation, high safety, great stability, high loading capacity, and high mucosal delivery efficiency, BLPs can load and display proteins on the surface with the help of protein anchor (PA), making BLPs a proper delivery system. Owning to these features, BLPs are widely used in the development of adjuvants, vaccine carriers, virus/antigens purification, and enzyme immobilization. This review has attempted to gather a full understanding of the technical composition, characteristics, applications. The mechanism by which BLPs induces superior adaptive immune responses is also discussed. Besides, this review tracked the latest developments in the field of BLPs, including Lactobacillus-derived BLPs and novel anchors. Finally, the main limitations and proposed breakthrough points to further enhance the immunogenicity of BLPs vaccines were discussed, providing directions for future research. We hope that further developments in the field of antigen delivery of subunit vaccines or others will benefit from BLPs.


Assuntos
Bactérias , Probióticos , Antígenos , Adjuvantes Imunológicos , Vacinas de Subunidades , Probióticos/uso terapêutico
10.
Curr Microbiol ; 80(11): 364, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812274

RESUMO

Providencia heimbachae was previously identified in piglets with post-weaned diarrhea and associated with hindlimb paralysis. However, the pathogenic mechanisms and virulence factors of P. heimbachae are not fully known. Whole-genome sequence analysis will be helpful to extend our understanding of the characterization of P. heimbachae at a genomic level. In this study, we sequenced the whole genome of P. heimbachae for the first time using PacBio RS II sequencers and assembled de novo through hierarchical genome assembly process (HGAP). Furthermore, we performed further genome annotation. The genome of P. heimbachae 99101 consists of a circular chromosome (4,262,828 bp) and a circular plasmid (231,957 bp) with G + C contents of 40.43 and 47.16%, respectively. Genome-wide sequence analysis yielded a total of 286 predicted virulence factors, 178 resistance genes, 17 chaperone protein manipulators of fimbriae, 47 genes involved in the encoding of flagellin, 12 cell membrane-associated virulence genes, 18 Enterobacteriaceae common antigens, etc. Based on genome analysis, we preliminarily confirmed through animal experiments that the capsule was the virulence factor of P. heimbachae causing hindlimb paralysis in animals. Our study provides a genetic basis for further elucidation of the characteristics and functional mechanisms of P. heimbachae as a conditionally pathogenic bacterium, as well as a direction for research into the mechanism of action of P. heimbachae infecting humans, extending knowledge of P. heimbachae as an important zoonotic pathogen.


Assuntos
Diarreia , Fatores de Virulência , Animais , Humanos , Suínos , Virulência/genética , Fatores de Virulência/genética , Diarreia/veterinária , Paralisia
11.
J Anim Sci Biotechnol ; 14(1): 121, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667318

RESUMO

BACKGROUND: Rosemary extract (RE) has been reported to exert antioxidant property. However, the application of RE in late-phase laying hens on egg quality, intestinal barrier and microbiota, and oviductal function has not been systematically studied. This study was investigated to detect the potential effects of RE on performance, egg quality, serum parameters, intestinal heath, cecal microbiota and metabolism, and oviductal gene expressions in late-phase laying hens. A total of 210 65-week-old "Jing Tint 6" laying hens were randomly allocated into five treatments with six replicates and seven birds per replicate and fed basal diet (CON) or basal diet supplemented with chlortetracycline at 50 mg/kg (CTC) or RE at 50 mg/kg (RE50), 100 mg/kg (RE100), and 200 mg/kg (RE200). RESULTS: Our results showed that RE200 improved (P < 0.05) Haugh unit and n-6/n-3 of egg yolk, serum superoxide dismutase (SOD) compared with CON. No significant differences were observed for Haugh unit and n-6/n-3 of egg yolk among CTC, RE50, RE100 and RE200 groups. Compared with CTC and RE50 groups, RE200 increased serum SOD activity on d 28 and 56. Compared with CON, RE supplementation decreased (P < 0.05) total cholesterol (TC) level. CTC, RE100 and RE200 decreased (P < 0.05) serum interleukin-6 (IL-6) content compared with CON. CTC and RE200 increased jejunal mRNA expression of ZO-1 and Occludin compared with CON. The biomarkers of cecal microbiota and metabolite induced by RE 200, including Firmicutes, Eisenbergiella, Paraprevotella, Papillibacter, and butyrate, were closely associated with Haugh unit, n-6/n-3, SOD, IL-6, and TC. PICRUSt2 analysis indicated that RE altered carbohydrate and amino acid metabolism of cecal microbiota and increased butyrate synthesizing enzymes, including 3-oxoacid CoA-transferase and butyrate-acetoacetate CoA-transferase. Moreover, transcriptomic analysis revealed that RE200 improved gene expressions and functional pathways related to immunity and albumen formation in the oviductal magnum. CONCLUSIONS: Dietary supplementation with 200 mg/kg RE could increase egg quality of late-phase laying hens via modulating intestinal barrier, cecal microbiota and metabolism, and oviductal function. Overall, RE could be used as a promising feed additive to improve egg quality of laying hens at late stage of production.

12.
Front Vet Sci ; 10: 1233972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771946

RESUMO

Canine cachavirus is a novel parvovirus belonging to the genus Chaphamaparvovirus that was first detected in dogs in the United States. However, our knowledge of the prevalence and genetic characteristics of cachavirus is relatively limited. In this study, 325 canine fecal specimens collected from healthy and diarrheic dogs in northeastern China were screened with PCR. Twenty-two of the 325 (6.8%) samples were positive for cachavirus. The diarrhea samples showed high viral coinfection rates, and we detected coinfections with canine astrovirus (CaAstV) and cachavirus for the first time. A sequence analysis revealed that the Chinese cachavirus strains have point mutations in four consecutive amino acid codons relative to the original American strain. A codon usage analysis of the VP1 gene showed that most preferred codons in cachavirus were A- or T-ending codons, as in traditional canine parvovirus 2. A co-evolutionary analysis showed that cachavirus has undergone cospeciation with its hosts and has been transmitted among different host species. Our findings extend the limited cachavirus sequences available, and provide detailed molecular characterization of the strains in northeastern China. Further epidemiological surveillance is required to determine the significance and evolution of cachavirus.

13.
Comp Immunol Microbiol Infect Dis ; 101: 102052, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37651788

RESUMO

Aleutian mink disease (AMD) is one of the most serious diseases in minks worldwide, it brings tremendous financial losses in mink farming. AMD virus (AMDV) has unusually high genetic diversity, its genomic structure remains unclear. In 2014, sudden death of breeding minks was occurred in northeast China. After clinical signs evaluation and virus isolation, AMDV was identified in all sudden death minks, we investigated the complete genomic sequence of AMDV-LM isolated from the sudden death case. The full-genome sequence of AMDV-LM was 7 nucleotides (nts) or 8 nts longer than isolates AMDV-BJ and AMDV-G. AMDV-LM contained two unique nucleotide changes in VP2 (G79T, T710C), which led to two amino acid changes G27W and L237S. For NS1, some unique point mutations, such as A374C, A428C, A463C, and T476A were found and resulted in four unique amino acid mutations at N24V, H125P, V143P, K155Q, and V159N, respectively. The predicted secondary structure of the 5' terminal of AMDV-LM formed a large bubble formation near the 5' end, which affected the stability of the U-shaped hairpin. Phylogenetic analysis demonstrated that AMDV-LM was closely related to Chinese isolates and confirmed that AMDV strains circulating in China had different origins of ancestors. This study was first to investigate the association of sudden death of adult breeding minks with AMDV infection. Our findings provide useful suggestions for evaluation of the pathogenic potential of AMDV, additional details on AMDV genome characterization were also presented. Future work should focus on the importance of AMDV-LM strain in mink infection.


Assuntos
Vírus da Doença Aleutiana do Vison , Animais , Vírus da Doença Aleutiana do Vison/genética , Vison/genética , Filogenia , Proteínas do Capsídeo/genética , Análise de Sequência de DNA/veterinária , Genômica
14.
Res Vet Sci ; 161: 145-155, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37384973

RESUMO

A novel Torque teno neovison virus (TTVs) was identified in specimens collected from dead mink during an outbreak of the Aleutian mink disease virus. Eighteen complete genomic sequences were obtained, ranging from 2109 to 2158 nucleotides in length and consisting of an untranslated region and three open reading frames. The genomic organization of mink TTVs is similar to previously reported anelloviruses. However, the deduced amino acid sequence of its ORF1 protein shows genetic diversity compared to related anelloviruses, suggesting that it represents a putative new species within the Anelloviridae family. This study provides a detailed molecular characterization of the novel mink anelloviruses, including its codon usage pattern, origin, and evolution. Analysis of the viral genomic sequences reveals the existence of multiple genotypes of co-infection. Principal component analysis and phylogenetic trees confirm the coexistence of multiple genotypes. Furthermore, the codon usage analyses indicate that mink TTVs have a genotype-specific codon usage pattern and show a low codon usage bias. Host-specific adaptation analysis suggests that TTVs are less adapted to mink. The possible origin and evolutionary history of mink TTVs were elucidated. Mink TTVs was genetically closely related to giant panda anellovirus, representing a new species. The observed incongruence between the phylogenetic history of TTVs and that of their hosts suggests that the evolution of anellovirus is largely determined by cross-species transmission. The study provides insights into the co-infection and genetic evolution of anellovirus in China.


Assuntos
Anelloviridae , Coinfecção , Torque teno virus , Animais , Anelloviridae/genética , Torque teno virus/genética , Vison , Filogenia , Coinfecção/veterinária , Genótipo
15.
Arch Microbiol ; 205(6): 251, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249701

RESUMO

There is an increasing interest in the use of spore-forming Bacillus spp. as probiotic ingredients on the market. However, probiotics Bacillus species are insufficient, and more safe Bacillus species were required. In the study, traditional fermented foods and soil samples were collected from more than ten provinces in China, and 506 Bacillus were selected from 109 samples. Using the optimized procedure, we screened nine strains, which successfully passed the acid, alkali, bile salt, and trypsin resistance test. Drug sensitivity test results showed that three Bacillus out of the nine isolates exhibited antibiotic sensitivity to more than 29 antibiotics. The three strains sensitive to antibiotics were identified by 16S ribosomal RNA, recA, and gyrB gene analysis, two isolates (38,327 and 38,328) belong to the species Lysinibacillus capsici and one isolate (37,326) belong to Bacillus halotolerans. Moreover, the three strains were confirmed safe through animal experiments. Finally, L. capsici 38,327 and 38,328 showed protections in the Salmonella typhimurium infection mouse model, which slowed down weight loss, reduced bacterial load, and improved antioxidant capacity. Altogether, our data demonstrated that selected L. capsici strains can be used as novel probiotics for intestinal health.


Assuntos
Bacillaceae , Probióticos , Animais , Camundongos , Solo , Antibacterianos/farmacologia , Bacillaceae/genética , Intestinos , RNA Ribossômico 16S/genética
16.
World J Surg Oncol ; 21(1): 124, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024870

RESUMO

BACKGROUND: Tissue-resident CD8+T cells (CD103+CD8+T cells) are the essential effector cell population of anti-tumor immune response in tissue regional immunity. And we have reported that IL-33 can promote the proliferation and effector function of tissue-resident CD103+CD8+T cells. As of now, the immunolocalization and the prognostic values of tissue-resident CD8+T cells in human hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) still remain to be illustrated. METHODS: In our present study, we used the tissue microarrays of HCC and ICC, the multicolor immunohistochemistry (mIHC), and imaging analysis to characterize the tissue-resident CD8+T cells in HCC and ICC tissues. The prognostic values and clinical associations were also analyzed. We also studied the biological functions and the cell-cell communication between tumor-infiltrating CD103+CD8+T cells and other cell types in HCC and ICC based on the published single-cell RNA sequencing (scRNA-seq) data. RESULTS: Our work unveiled the expressions of CD8 and CD103 and immunolocalization of tissue-resident CD8+T cells in human HCC and ICC. Elevated CD8+T cells indicated a better overall survival (OS) rate, implying that tumor-infiltrating CD8+T cells in HCC and ICC could serve as an independent prognostic factor. Moreover, the number of CD103+CD8+T cells was increased in HCC and ICC tissues compared with adjacent normal tissues. HCC patients defined as CD8highCD103high had a better OS, and the CD8lowCD103low group tended to have a poorer prognosis in ICC. Evaluation of the CD103+CD8+T-cell ratio in CD8+T cells could also be a prognostic predictor for HCC and ICC patients. A higher ratio of CD103+CD8+T cells over total CD8+T cells in HCC tissues was negatively and significantly associated with the advanced pathological stage. The percentage of higher numbers of CD103+CD8+T cells in ICC tissues was negatively and significantly associated with the advanced pathological stage. In contrast, the higher ratio of CD103+CD8+T cells over total CD8+T cells in ICC tissues was negatively and significantly associated with the advanced pathological stage. In addition, single-cell transcriptomics revealed that CD103+CD8+T cells were enriched in genes associated with T-cell activation, proliferation, cytokine function, and T-cell exhaustion. CONCLUSION: The CD103+ tumor-specific T cells signified an important prognostic marker with improved OS, and the evaluation of the tissue-resident CD103+CD8+T cells might be helpful in assessing the on-treatment response of liver cancer.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Prognóstico , Neoplasias Hepáticas/patologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linfócitos do Interstício Tumoral
17.
Front Immunol ; 14: 1150803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056782

RESUMO

It is well-known that CD226 serves as a critical activating receptor on various immune cells, such as lymphocytes and monocytes, and it is suggested to promote anti-tumor immunity in the tumor microenvironment (TME). Herein, we showed a crucial regulatory role of CD226 in CD8+T cell-mediated anti-tumor response in TME of human gastric cancer (GC). Specifically, the increased CD226 expression in cancer tissues was significantly associated with better clinical outcomes in GC patients. Moreover, the increased infiltrating CD226+CD8+T cells and the increased ratio of infiltrating CD226+CD8+T cells in CD8+T subpopulation within cancer tissues could also be valuable prognostic predictors for GC patients. Mechanically, the assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis revealed that the chromatin accessibility of CD226 in CD4+ and CD8+TILs was significantly higher than that in CD8+T cells in normal tissues. Further analysis showed that CD8+TILs highly expressed immune checkpoint molecules, such as TIGIT, LAG3, and HAVCR2, which means CD8+TILs are more exhausted. In addition, our multi-color immunohistochemical staining (mIHC) revealed that GC patients with higher frequency of IFN-γ+CD226+CD8+TILs showed poorer prognosis. Combined with the single-cell transcriptome sequencing (scRNA-seq) data analysis, we found that the expressions of IFN-γ and TIGIT in CD8+TILs were significantly and positively correlated. The expression of TIGIT in IFN-γ+CD226+CD8+TILs was higher, while that in IFN-γ-CD226+CD8+TILs was significantly lower. The correlation analysis showed that the expression of CD226 was positively correlated with the score of effector T cells but negatively correlated with that of immunosuppressive factors, such as Tregs and tumor-associated macrophages (TAMs). Collectively, we showed that the frequency of CD226+CD8+TILs was an excellent prognostic predictor for GC patients. Our findings provided insights into the interaction pattern between co-stimulatory receptor CD226 and tumor cells as well as the infiltrating immune cells in the TME in GC.


Assuntos
Neoplasias Gástricas , Humanos , Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Receptores Imunológicos/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Microambiente Tumoral
18.
Front Immunol ; 14: 1116223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793732

RESUMO

Nano selenium-enriched probiotics have been identified to improve immune responses, such as alleviating inflammation, antioxidant function, treatment of tumors, anticancer activity, and regulating intestinal flora. However, so far, there is little information on improving the immune effect of the vaccine. Here, we prepared nano selenium-enriched Levilactobacillus brevis 23017 (SeL) and heat-inactivated nano selenium-enriched L. brevis 23017 (HiSeL) and evaluated their immune enhancing functions on the alum-adjuvanted, inactivated Clostridium perfringens type A vaccine in mouse and rabbit models, respectively. We found that SeL enhanced immune responses of the vaccine by inducing a more rapid antibody production, eliciting higher immunoglobulin G (IgG) antibody titers, improving secretory immunoglobulin A (SIgA) antibody level and cellular immune response, and regulating Th1/Th2 immune response, thus helping to induce better protective efficacy after challenge. Moreover, we confirmed that the immunoenhancement effects are related to regulating oxidative stress, cytokine secretion, and selenoprotein expression. Meanwhile, similar effects were observed in HiSeL. In addition, they show enhanced humoral immune response at 1/2 and 1/4 standard vaccine doses, which confirms their prominent immune enhancement effect. Finally, the effect of improving vaccine immune responses was further confirmed in rabbits, which shows that SeL stimulates the production of IgG antibodies, generates α toxin-neutralizing antibodies rapidly, and reduces the pathological damage to intestine tissue. Our study demonstrates that nano selenium-enriched probiotics improve the immune effect of the alum adjuvants vaccine and highlight its potential usage in remedying the disadvantages of alum adjuvants.


Assuntos
Probióticos , Selênio , Animais , Camundongos , Coelhos , Imunidade nas Mucosas , Adjuvantes Imunológicos/farmacologia , Lactobacillus , Selênio/farmacologia , Antígenos , Imunoglobulina G , Probióticos/farmacologia
19.
Comp Immunol Microbiol Infect Dis ; 94: 101956, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36804645

RESUMO

Canine coronavirus (CCoV) is associated with diarrhea in dogs, with a high incidence and sometimes even death. However, there is currently limited information about its prevalence and molecular characterization in northeastern China. Therefore, in this study, we examined 325 canine fecal specimens in four provinces in northeastern China from 2019 to 2021. PCR results revealed that 57 out of 325 (17.5%) samples were found to be positive for CCoV, and the positive rate varies obviously with city, season, age and so on. High incidence (65%) of viral co-infection was detected in the diarrhea samples and mixed infection of distinct CCoV genotypes occurs extensively. More importantly, sequence analysis showed that the S gene has a strong mutation. Phylogenetic analysis demonstrated that CCoV-I and CCoV-II strains has different origins. In particular, we found the CCoV-IIa strains of S gene sequenced and the reference strain B906_ZJ_2019 were highly clustered, and the reference strain was a recombinant strain of CCoV-I and CCoV-II. Our findings provide useful orienting clues for evaluating the pathogenic potential of CCoV in canines, and point out more details on characterization in northeastern China. Further work is required to determine the significance and continuous genetic evolution of CCoV.


Assuntos
Infecções por Coronavirus , Coronavirus Canino , Doenças do Cão , Animais , Cães , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Coronavirus Canino/genética , Prevalência , Filogenia , Diarreia/veterinária , China , Variação Genética , Doenças do Cão/epidemiologia , Fezes
20.
Cell Biol Toxicol ; 39(3): 1015-1035, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34648132

RESUMO

Doxorubicin (DOX) has toxic effects on the heart, causing cardiomyopathy and heart injury, but the underlying mechanisms of these effects require further investigation. This study investigated the role of DOX in promoting ferroptosis to induce myocardial injury. AC16 cardiomyocyte and neonatal rat ventricle cardiomyocytes were used as an in vitro model to study the molecules involved in myocardial injury using gene silencing, ectopic expression, and RNA immunoprecipitation. Messenger RNA and protein level analyses showed that DOX treatment resulted in the upregulation of methyltransferase-like 14 (METTL14), which catalyzes the m6A modification of the long non-coding RNA KCNQ1OT1, a miR-7-5p sponge. The RNA-binding protein IGF2BP1 is associated with KCNQ1OT1 to increase its stability and robustly inhibit miR-7-5p activity. Furthermore, a lack of miR-7-5p expression led to increased levels of transferrin receptor, promoting the uptake of iron and production of lipid reactive oxygen species and demonstrating that DOX-induced ferroptosis occurs in AC16 cells. Additionally, we found that miR-7-5p targets METTL14 in AC16 cells. Meanwhile, the role of METTL14/KCNQ1OT1/miR-7-5p axis in regulating ferroptosis in neonatal rat ventricle cardiomyocytes was also confirmed. Our results indicate that selectively inhibiting ferroptosis mediated by a METTL14/KCNQ1OT1/miR-7-5p positive feedback loop in cardiomyocytes could provide a new therapeutic approach to control DOX-induced cardiac injury.


Assuntos
Ferroptose , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doxorrubicina/farmacologia , Receptores da Transferrina/metabolismo , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...